# I FILTRI FOTOMETRICI UBVRI DELL'AFAM

#### 1 Premessa

Una stella emette un flusso di radiazioni elettromagnetiche che dipendono dalla sua temperatura superficiale. Queste radiazioni vengono percepite dall'occhio umano come luce visibile. La luce emessa ha un picco in una certa frequenza elettromagnetica e questo determina il colore della stella, come appare alla nostra vista.

Tuttavia, la luce emessa dalla stella ha uno spettro continuo che si estende per una notevole gamma di frequenze. La capacità di suddividere il flusso luminoso in varie bande e misurare il flusso in ciascuna banda consente di determinare la temperatura superficiale della stella e, attraverso l'analisi dei cambiamenti di intensità nel tempo, consente anche di scoprire come la stella si comporta.

Per isolare la radiazione luminosa nelle varie bande vengono usati i filtri fotometrici, ove il termine «fotometrici» indica che si tratta non di semplici filtri colorati, ma di filtri accuratamente tarati in modo che la percentuale di flusso luminoso registrato in ogni frequenza sia conforme a un certo standard prestabilito.

Esistono molti sistemi fotometrici. Il più diffuso è il sistema UBVRI di Johnson-Cousins, detto «sistema standard», composto da filtri che suddividono la luce in cinque bande (Ultravioletto, Blu e Visuale di Johnson-Cousins, Rosso e Infrarosso di Cousins, spesso identificati con le sigle Uj, Bj, Vj, Rc e Ic per distinguerli da altri filtri che agiscono su bande simili, ma con caratteristiche diverse.

E' chiaro che, per ottenere misure che siano confrontabili tra di loro, tutti gli osservatori dovrebbero disporre di strumenti e filtri identici e uguali a quelli usati dai primi osservatori che hanno registrato la luce emessa nelle varie bande dalle stelle catalogate, il che non è possibile. Al momento, le misurazioni vengono effettuate con macchine fotografiche ad accoppiamento di carica o CCD, servendosi di filtri costruiti in modo da far passare per quanto possibile la stessa percentuale di luce alle varie frequenze (trasmittanza) che passerebbe con i filtri standard.

Vi sono molti produttori di filtri UBVRI, ma non tutti i filtri prodotti si conformano bene a quelli standard di Johnson e Cousins. Poiché quanto più la trasmittanza di un filtro fotometrico si allontana da quella Johnson-Cousins, tanto più difficile è ricondurre le misure effettuate a quelle standard, diventa importante scegliere filtri che si avvicinino quanto più possibile allo standard. Le curve di trasmittanza del sistema Johnson-Cousins sono state ricostruite da Bessel<sup>1</sup> e sono mostrate in Fig. 1.1. In Appendice 1 è riprodotta la tabella contenuta nell'articolo di Bessel.



Figura 1.1:

Si noti però che le curve mostrate sono state tutte normalizzate in modo che il picco di ciascuna curva raggiunga il 100%. In realtà, se le curve fossero mostrate con la trasmittanza relativa, la loro altezza sarebbe diversa, con le curve Uj e Bj che raggiungono una trasmittanza attorno al 70-80%, la Vj che arriva al 90-95% etc.

### 2 I filtri in uso presso l'AFAM

L'AFAM ha acquistato nel 2018 una serie di filtri standard UBVRI prodotti dalla Baader-Planetarium.

Si tratta di filtri molto recenti, di cui la società produttrice proclama che aderiscono strettamente alle specifiche di trasmittanza di Johnson/Bessel.

<sup>&</sup>lt;sup>1</sup>M.S. Bessel, «UBVRI Passbands», Astronomical Society of the Pacific, Oct. 1990)

Questi filtri, del diametro di 31,8 mm (1,25"), di 4 mm di spessore, inseriti in un anello con filettatura («camicia»), sono stati scelti in quanto sono abbastanza sottili da poter essere avvitati nelle ruote portafiltri senza bisogno di essere scamiciati e hanno un prezzo relativamente basso (170 euro ciascuno al momento dell'acquisto). I filtri sono costituiti da una combinazione di dischi di vetro per filtrare la banda passante e ogni disco è rivestito con uno strato dielettrico per assicurare l'assenza di riflessi.

Le curve di trasmittanza dichiarate dalla Baader-Planetarium sono riportate in Fig. 2.1. Benché ci siano alcune differenze, come si può vedere le caratteristiche dichiarate si conformano abbastanza bene a quelle dei filtri Johnson-Cousins.



Figura 2.1:

Per esaminare le caratteristiche reali dei nostri filtri, il 17 agosto abbiamo portato i filtri a Forlì, ove il Stefano Moretti dell'Asiago Novae and Symbiotic Collaboration, che ringraziamo, ne ha misurato le caratteristiche. Le misure sono state effettuate nelle lunghezze d'onda da 200 a 1100 nm con passo di 1 nm.

I nostri dati sono stati confrontati con quelli dei filtri UBV di Johnson-Cousins, secondo l'approssimazione di Bessel, come riportati nella Tabella 2 dell'articolo citato (Appendice 1).

Una tabella simile, ma relativa ai filtri dell'AFAM, è invece riportata in Appendice 2. La tabella riporta anche le caratteristiche del filtro H-alfa, che non è un filtro fotometrico, ma di cui comunque disponiamo e che è stato anch'esso misurato.

#### 3 Comparazione

Le curve ottenute per i filtri UBVRI e H-alfa dell'AFAM sono riportate nella figura seguente<sup>2</sup>.



Figura 3.1:

I filtri mostrano una rimarchevole corrispondenza con la curva dichiarata dalla Baader-Planetarium, indice di una apprezzabile precisione nella lavorazione, dato che quest'ultima deve essere intesa come una curva «media» e ogni filtro può avere piccole variazioni statistiche.

Si noti la leggera contaminazione nel filtro I oltre i 1000 nm, peraltro visibile anche nella curva ufficiale della Baader-Planetarium.

Degna di nota è anche la maggiore trasmissibilità massima del filtro U rispetto a quanto mostrato nella curva ufficiale della Baader-Planetarium (in altre parole, abbiamo un filtro U un po' più efficiente di quanto previsto).

 $<sup>^2{\</sup>rm I}$  colori delle curve, poco intuitivi, sono stati scelti in modo da corrispondere a quelli dell'immagine della Baader-Planetarium.

In ogni caso, ciò che conta è la corrispondenza con le curve dei filtri «standard» come definite da Bessel, che è mostrata nella figura successiva. La doppia curva in B è dovuta al fatto che Bessel definisce due curve di trasmissione in questo filtro, usate per scopi diversi<sup>3</sup>.



Figura 3.2:

Come si vede dal grafico, la corrispondenza c'è, anche se non è perfetta.

Curve di questo tipo sono caratterizzate dalla frequenza di picco  $(\lambda_{peak})$ , cui corrisponde il massimo della trasmissibilità, e dalla larghezza della curva nel punto di altezza media (FWHM :«Full Width, Half Maximum»). Anche a un'ispezione visuale appare che le frequenze di picco dei due gruppi sono molto vicine, mentre le FWHM differiscono, in particolare nei filtri B e V.

Le frequenze di picco e le FWHM dei filtri Baader-Planetarium dell'AFAM e dell'approssimazione di Bessel sono stati calcolati analiticamente<sup>4</sup>, con i risultati mostrati nella tabella seguente (tutti i valori in nm):

 $<sup>^{3}</sup>$ Le curve UX e BX vengono usate per calcolare il colore (U - B) standard, mentre la curva B viene usata per gli altri colori

<sup>&</sup>lt;sup>4</sup>Per le immagini e il trattamento dei dati è stato usato il programma statistico R. Per quanto riguarda i calcoli successivamente effettuati sulle curve, i dati numerici sono stati smussati e interpolati con spline.

| Filtro     | picco (%) | $\lambda_{peak}$ | $ \Delta\lambda_{peak} $ | FWHM  | $ \Delta FWHM $ |
|------------|-----------|------------------|--------------------------|-------|-----------------|
| Bessel_UjX | 69.2730   | 370              | 2                        | 65.3  | 5.8(8.9%)       |
| AFAM_Uj    | 69.2706   | 368              | -                        | 59.5  | -               |
| Bessel_BjX | 68.5420   | 420              | 0                        | 98.1  | 18 (18%)        |
| Bessel_Bj  | 68.542    | 420              | 0                        | 94.9  | 14.8 (16%)      |
| AFAM_Bj    | 67.6313   | 420              | -                        | 80.1  | _               |
| Bessel_Vj  | 90.364    | 530              | 6                        | 85.3  | 33.3(39%)       |
| AFAM_Vj    | 90.3456   | 524              | -                        | 118.6 | -               |
| Bessel_Rc  | 82.8260   | 600              | 9                        | 156.7 | 12.4 (8%)       |
| AFAM_Rc    | 82.8429   | 591              | -                        | 144.3 | -               |
| Bessel_Ic  | 94.743    | 800              | 35                       | 154.5 | 9.5~(6%)        |
| AFAM_Ic    | 94.7219   | 835              | -                        | 164   | -               |



### 4 Conclusioni

Abbiamo confrontato le curve di trasmittanza dei filtri fotometrici UBVRI Baader-Planetarium in possesso dell'AFAM con l'approssimazione di Bessel dei filtri Johnson-Cousins, che rappresentano lo standard più diffuso per le misurazioni in fotometria.

Piuttosto che confrontare i valori di  $\lambda_{peak}$  e FWHM dei nostri filtri con i corrispondenti valori pubblicati, si è preferito ricavare i valori di riferimento direttamente dalle curve pubblicate da Bessel nell'articolo citato, in quanto in pratica i valori pubblicati nella letteratura scientifica differiscono a seconda dei filtri usati dall'autore. Ad esempio, Wikipedia, che è probabilmente la fonte di riferimento più attuale, riporta i valori indicati nell'Appendice 3.

Nel complesso, la differenza nella *frequenza di picco* tra i filtri dell'AFAM e l'approssimazione di Bessel appare contenuta, con l'eccezione del filtro I. Un po' più rilevanti le differenze in FWHM, soprattutto nei filtri più usati, cioè il V e il B.

Si pone pertanto il problema di valutare quanto queste differenze influenzino le prestazioni del nostro sistema.

Nella pratica, nessun sistema ottico (telescopio+filtri+CCD) è perfettamente aderente al sistema standard e, per ogni sistema, per riportare le misurazioni a quelle standard UBVRI vengono calcolati dei coefficienti di trasformazione.

Nel caso dell'AFAM, due anni di uso dei filtri con la precedente CCD<sup>5</sup> hanno dimostrato una buona aderenza al sistema standard, con coefficienti di trasformazione molto poco influenti, tanto che nella maggior parte dei casi i dati che forniamo non vengono ridotti al sistema standard. In pratica, la presenza di variazioni anche sensibili dei nostri filtri rispetto all'approssimazione di Bessel non sembra influire in maniera determinante sulle misurazioni.

 $<sup>^5 \</sup>mathrm{Una}$  FLI 1001E.

# Appendice 1

Tabella delle curve normalizzate secondo l'approssimazione di Bessel alle bande UBVRI di Johnson-Cousins $^{6}.$ 

| $\lambda$ | UX    | $\lambda$ | BX    | В     | $\lambda$ | V     | $\lambda$ | R    | $\lambda$ | Ι     |
|-----------|-------|-----------|-------|-------|-----------|-------|-----------|------|-----------|-------|
| 300       | 0.000 | 360       | 0.000 | 0.000 | 470       | 0.000 | 550       | 0.00 | 700       | 0.000 |
| 305       | 0.016 | 370       | 0.026 | 0.030 | 480       | 0.030 | 560       | 0.23 | 710       | 0.024 |
| 310       | 0.068 | 380       | 0.120 | 0.134 | 490       | 0.163 | 570       | 0.74 | 720       | 0.232 |
| 315       | 0.167 | 390       | 0.523 | 0.567 | 500       | 0.458 | 580       | 0.91 | 730       | 0.555 |
| 320       | 0.287 | 400       | 0.875 | 0.920 | 510       | 0.780 | 590       | 0.98 | 740       | 0.785 |
| 325       | 0.423 | 410       | 0.956 | 0.978 | 520       | 0.967 | 600       | 1.00 | 750       | 0.910 |
| 330       | 0.560 | 420       | 1.000 | 1.000 | 530       | 1.000 | 610       | 0.98 | 760       | 0.965 |
| 335       | 0.673 | 430       | 0.998 | 0.978 | 540       | 0.973 | 620       | 0.96 | 770       | 0.985 |
| 340       | 0.772 | 440       | 0.972 | 0.935 | 550       | 0.898 | 630       | 0.93 | 780       | 0.990 |
| 345       | 0.841 | 450       | 0.901 | 0.853 | 560       | 0.792 | 640       | 0.90 | 790       | 1.000 |
| 350       | 0.905 | 460       | 0.793 | 0.740 | 570       | 0.684 | 650       | 0.86 | 800       | 1.000 |
| 355       | 0.943 | 470       | 0.694 | 0.640 | 580       | 0.574 | 660       | 0.81 | 810       | 1.000 |
| 360       | 0.981 | 480       | 0.587 | 0.536 | 590       | 0.461 | 670       | 0.78 | 820       | 0.990 |
| 365       | 0.993 | 490       | 0.470 | 0.424 | 600       | 0.359 | 680       | 0.72 | 830       | 0.980 |
| 370       | 1.000 | 500       | 0.362 | 0.325 | 610       | 0.270 | 690       | 0.67 | 840       | 0.950 |
| 375       | 0.989 | 510       | 0.263 | 0.235 | 620       | 0.197 | 700       | 0.61 | 850       | 0.910 |
| 380       | 0.916 | 520       | 0.169 | 0.150 | 630       | 0.135 | 710       | 0.56 | 860       | 0.860 |
| 385       | 0.804 | 530       | 0.107 | 0.095 | 640       | 0.081 | 720       | 0.51 | 870       | 0.750 |
| 390       | 0.625 | 540       | 0.049 | 0.043 | 650       | 0.045 | 730       | 0.46 | 880       | 0.560 |
| 395       | 0.423 | 550       | 0.010 | 0.009 | 660       | 0.025 | 740       | 0.40 | 890       | 0.330 |
| 400       | 0.238 | 560       | 0.000 | 0.000 | 670       | 0.017 | 750       | 0.35 | 900       | 0.150 |
| 405       | 0.114 |           |       |       | 680       | 0.013 | 800       | 0.14 | 910       | 0.030 |
| 410       | 0.051 |           |       |       | 690       | 0.009 | 850       | 0.03 | 920       | 0.000 |
| 415       | 0.019 |           |       |       | 700       | 0.000 | 900       | 0.00 |           |       |
| 420       | 0.000 |           |       |       |           |       |           |      |           |       |

Tabella 2:

 $<sup>^6\</sup>mathrm{M.S.}$ Bessel, «UBVRI Passbands», Astronomical Society of the Pacific, Oct. 1990)

## Appendice 2

Dati delle curve dei filtri UBVRI e H-alfa tipo Baader-Planetarium dell'AFAM, misurati il 27 agosto 2020.

| $\lambda$ | UX    | $\lambda$ | BX    | $\lambda$ | V     | $\lambda$ | R     | $\lambda$ | Ι     | $\lambda$ | H-alfa |
|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|--------|
| 300       | 0.000 | 360       | 0.000 | 470       | 0.001 | 550       | 0.007 | 700       | 0.060 | 635       | 0.001  |
| 305       | 0.000 | 370       | 0.028 | 480       | 0.123 | 560       | 0.143 | 710       | 0.256 | 640       | 0.003  |
| 310       | 0.002 | 380       | 0.203 | 490       | 0.555 | 570       | 0.521 | 720       | 0.559 | 642       | 0.005  |
| 315       | 0.014 | 390       | 0.440 | 500       | 0.803 | 580       | 0.741 | 730       | 0.764 | 644       | 0.009  |
| 320       | 0.064 | 400       | 0.546 | 510       | 0.882 | 590       | 0.828 | 740       | 0.857 | 646       | 0.020  |
| 325       | 0.155 | 410       | 0.659 | 520       | 0.902 | 600       | 0.814 | 750       | 0.905 | 648       | 0.050  |
| 330       | 0.269 | 420       | 0.684 | 530       | 0.901 | 610       | 0.808 | 760       | 0.922 | 650       | 0.146  |
| 335       | 0.386 | 430       | 0.645 | 540       | 0.885 | 620       | 0.786 | 770       | 0.956 | 652       | 0.408  |
| 340       | 0.480 | 440       | 0.600 | 550       | 0.857 | 630       | 0.758 | 780       | 0.943 | 654       | 0.686  |
| 345       | 0.553 | 450       | 0.519 | 560       | 0.811 | 640       | 0.706 | 790       | 0.940 | 655       | 0.774  |
| 350       | 0.607 | 460       | 0.407 | 570       | 0.752 | 650       | 0.682 | 800       | 0.944 | 656       | 0.842  |
| 355       | 0.645 | 470       | 0.271 | 580       | 0.680 | 660       | 0.647 | 810       | 0.946 | 657       | 0.834  |
| 360       | 0.674 | 480       | 0.151 | 590       | 0.588 | 670       | 0.603 | 820       | 0.941 | 658       | 0.677  |
| 365       | 0.690 | 490       | 0.070 | 600       | 0.506 | 680       | 0.565 | 830       | 0.945 | 659       | 0.438  |
| 370       | 0.692 | 500       | 0.003 | 610       | 0.417 | 690       | 0.509 | 840       | 0.944 | 660       | 0.137  |
| 375       | 0.678 | 510       | 0.000 | 620       | 0.332 | 700       | 0.462 | 850       | 0.936 | 661       | 0.137  |
| 380       | 0.639 | 520       | 0.000 | 630       | 0.254 | 710       | 0.421 | 860       | 0.944 | 662       | 0.080  |
| 385       | 0.555 | 530       | 0.000 | 640       | 0.189 | 720       | 0.373 | 870       | 0.885 | 663       | 0.048  |
| 390       | 0.428 | 540       | 0.000 | 650       | 0.136 | 730       | 0.330 | 880       | 0.573 | 664       | 0.031  |
| 395       | 0.277 | 550       | 0.000 | 660       | 0.095 | 740       | 0.290 | 890       | 0.052 | 665       | 0.021  |
| 400       | 0.146 | 560       | 0.000 | 670       | 0.064 | 750       | 0.245 | 900       | 0.007 | 666       | 0.015  |
| 405       | 0.060 |           |       | 680       | 0.042 | 800       | 0.096 | 910       | 0.002 | 667       | 0.011  |
| 410       | 0.019 |           |       | 690       | 0.027 | 850       | 0.001 | 920       | 0.001 | 668       | 0.008  |
| 415       | 0.005 |           |       | 700       | 0.017 | 900       | 0.000 |           |       | 672       | 0.003  |
| 420       | 0.001 |           |       | 710       | 0.010 |           |       |           |       | 675       | 0.002  |
| 425       | 0.000 |           |       | 720       | 0.006 |           |       |           |       | 680       | 0.001  |

#### Tabella 3:

Le misurazioni in ogni filtro sono state effettuate da Stefano Moretti con un passo di 1 nm. Per conformità, la tabella riporta i valori corrispondenti alle lunghezze d'onda fornite da Bessel e riportate nella tabella precedente, ma tutti i calcoli e le immagini nel testo sono state ottenute con l'intero insieme delle misure.

### Appendice 3

Confronto tra i valori di frequenza di picco e FWHM dell'AFAM, secondo l'approssimazione di Bessel e secondo Wikipedia.

Nelle tabelle è riportato anche lo scostamento dei filtri dell'AFAM con l'approssimazione di Bessel e con i dati forniti da Wikipedia e, per la FWHM, anche la percentuale dello scostamento.

Nel complesso, a parte il filtro I, le *frequenze di picco* dei filtri AFAM sono più aderenti all'approssimazione di Bessel di quanto lo siano i dati di Wikipedia, mentre lo scostamento in percentuale della FWHM favorisce i nostri filtri solo nelle bande U e I, è paragonabile a quello di Wikipedia nelle bande B e V ed è superiore, ma comunque numericamente esiguo, nella banda R.

| frequenza di picco | U   | $ \Delta U $ | В   | $ \Delta B $ | V   | $ \Delta V $ | R   | $ \Delta R $ | Ι   | $ \Delta I $ |
|--------------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|
| AFAM               | 368 | -            | 420 | -            | 524 | -            | 591 | -            | 835 | -            |
| Approx Bessel      | 370 | 2            | 420 | 0            | 530 | 6            | 600 | 9            | 800 | 35           |
| Wikipedia          | 365 | 3            | 445 | 25           | 551 | 27           | 658 | 67           | 806 | 29           |

| FWHM       | U    | $ \Delta U $ | В    | $ \Delta B $ | V     | $ \Delta V $ | R     | $ \Delta R $ | Ι     | $ \Delta I $ |
|------------|------|--------------|------|--------------|-------|--------------|-------|--------------|-------|--------------|
| AFAM       | 59.5 | -            | 80.1 | -            | 118.6 | -            | 144.3 | -            | 164   | -            |
| Apx Bessel | 65.3 | 5.8 (10%)    | 94.9 | 14.8 (18%)   | 85.3  | 33.3~(28%)   | 156.7 | 12.4 (9%)    | 154.5 | 9.5~(6%)     |
| Wikipedia  | 66.0 | 6.5(10%)     | 94.0 | 13.9 (17%)   | 88.0  | 30.6~(26%)   | 138.0 | 6.3 (4%)     | 149.0 | 15 (9%)      |

Figura 4.1: